博彩导航

理学院数理讲坛(2013年第一讲)
发布时间: 2013-01-08 11:59
作者:
点击:[]

题目:Some results on curvature and topology of Finsler manifolds;
        
报告人:吴炳烨教授(闽江学院数学系)
         
时间:2013年1月10日下午3:00
        
地点:北楼116会议室;

专家介绍:吴炳烨教授,现为美国《数学评论》评论员、福建省数学会常务理事、闽江学院“闽都学者”特聘教授。从事数学与应用数学的教学与研究工作二十余年,成绩突出。已在国内外高水平学术刊物上发表SCI检索论文二十余篇,出版著作一部。多次应邀参加国际学术会议并在大会上作报告,主持完成国家和省级课题多项。

摘要:In this talk we investigate the curvature and topology of Finsler manifolds, mainly the growth of fundamental group. By choosing a new counting function for the fundamental group that does not rely on the generators, we are able to discuss the topic in more general case, namely, we do not demand that the manifold is compact or the fundamental group is finitely generated. Among other things, we prove that the fundamental group of a forward complete and noncompact Finsler $n$-manifold $(M,F)$ with non-negative Ricci curvature and finite uniformity constant has polynomial growth of order $\le n-1$, and the first Betti number satisfies $b_1(M)\len-1$. We also obtain some sufficient conditions to ensure that the fundamental group is finite or is trivial. Most of the results are new even for Riemannian manifolds.