理学院数理讲坛(2017年第40讲)
报告题目:Long time existence for semilinear wave equations on asymptotically flat space-times
报 告 人:王成波 教授
单 位:浙江大学
报告时间:2017年9月29日(星期五)10:00 -11:00
报告地点:龙赛理科楼116
报告摘要:In this talk, we will talk about the long time existence of solutions to semilinear wave equations of the form $(\partial_t^2-\Delta) u=|u|^p$, for small data with sufficient regularity and decay, of size $\epsilon$, on a large class of $(1+n)$-dimensional Lorentzian nonstationary asymptotically flat backgrounds $(M, g)$. Under the assumption that uniform energy bounds and a weak form of local energy estimates hold forward in time, we obtain the sharp lower bounds of the lifespan for three dimensional subcritical and four dimensional critical cases. For the most delicate three dimensional critical case, we obtain the existence result up to $\exp(c \epsilon^{-2(p-1)})$, for many space-times including the nontrapping exterior domain, nontrapping asymptotically Euclidean space and Schwarzschild black hole space-time. The global existence for the problem with $p>p_c$ and $n=3,4$ has been proven in our previous joint works with Hans Lindblad, Jason Metcalfe, Mihai Tohaneanu and Chris Sogge.
报告人简介:
王成波,浙江大学数学科学学院教授,主要从事调和分析和偏微分方程,特别是非线性波动方程和色散型方程的理论研究。
2002年、2007年于浙江大学获学士、博士学位(导师方道元教授),2007年-2008年浙江大学博士后; 2008年-2011年任Johns Hopkins University助理教授;2011年回到浙江大学工作。学术成果发表于CMP,CPDE,JDE, JFA, JMPA, Math. Ann, Trans. AMS等期刊。2012年获浙江省杰出青年基金资助,以第二完成人获2014年教育部自然科学奖二等奖,入选2014年专家青年拔尖人才支持计划。