博彩导航

物理讲坛(2019年第03讲)——可编程硅基纳米线生长调控及高性能柔性薄膜电子器件集成应用
发布时间: 2019-03-26 16:10
作者:
点击:[]


物理讲坛2019年第03讲)  

报告题目:可编程硅基纳米线生长调控及高性能柔性薄膜电子器件集成应用

报告人:余林蔚,教授/博导

单 位南京大学

报告时间:2019327日 (星期三)下午  15:00-15:45

报告地点:龙赛理科楼北楼116

报告摘要:The  modern electronics have been built upon the bulk crystalline silicon (c-Si),  which is, however, a brittle semiconductor that offers little stretchability.  While most of the stretchable electronics have been prototyped with polymer and  organic semiconductors, the high carrier mobility, stability and the best-known  passivation and doping controls established in c-Si are surely desirable for  building high performance soft electronics. To endow extra stretchability, a  precise and programmable line-shape engineering of the quasi-1D silicon nanowire  (SiNW) channels represents a promising new strategy. We here explore a  self-assembly in-plane solid-liquid-solid (IPSLS) growth of SiNWs,[1-5]  where a thin film of amorphous Si (a-Si) is fed as precursor layer to drive the  indium (In) or tin (Sn) nano-droplets to move and produce well-defined  crystalline SiNWs behind. The line-shape of the in-plane SiNWs can be engineered  either via a self-automated zigzag growth, stimulated by a strong interface  squeezing interaction during the in-plane growth,[6] or  via a deterministic line-shape programming of in-plane SiNWs into extremely  stretchable springs or arbitrary 2D patterns, with the aid of a precise guided  growth along programmed step edges. [7]  These new capabilities have enabled us to demonstrate a super-elastic and robust  electric transport carried by the SiNW springs even under large stretching of  more than 200%. This highly reliable line-shape programming approach holds a  strong promise to extend the glory legend of c-Si technology into the new  generation of bio-friendly and stretchable electronics.  

References

[1] L. Yu, P.-J. Alet, G. Picardi, and P. Roca i  Cabarrocas, Phys. Rev. Lett. 102,  125501 (2009).

[2] L. Yu and P. Roca i Cabarrocas, Phys. Rev. B 81, 085323  (2010).

[3] M. Xu et  al., Nano Lett. 16, 7317  (2016).

[4] Z. Xue  et al., Nature communications 7,  12836 (2016).

[5] L. Yu et  al., Nano Lett. 14, 6469  (2014).

[6] Z. Xue  et al., Adv. Func. Mater. 26,  5352 (2016).

[7] Z. Xue et al., Nano Lett. 17, 7638  (2017).

报告人简介:

余林蔚,南京大学教授,博士生导师,江苏省“双创个人及团队计划”及江苏省杰出青年基金。《半导体学报》和《Nanotechnology》编委。在纳米线生长控制领域的一系列原创性工作多次被学术新闻媒体Nature Materials HighlightsSPIE Newsroom,  APS Physics FocusPhys.org报道。相关工作已发表学术论文100余篇,其中以第一或通讯作者在PRL,Nature Commun., Nano  Letters, Adv. Mater., Adv. Funct. Mater., Nano Energ. 等国际一流学术期刊上发表论文60余篇。参加国际会议80余次,其中邀请报告22次。长期担任ACS Nano, APL, AFM, AEM, IEEE Trans.  series20余个SCI期刊的审稿人。承担和参与多项973重大研究、国家自然科学基金和江苏省科技支撑重点研发计划等。申请和获得国际PCT发明授权专利2项和国内发明专利7项,申请受理国际和国内专利12项。